added current and resistance calculations and graphs

This commit is contained in:
garrett 2024-09-26 23:57:38 -04:00 committed by Haldrup-tech
parent 1fc270deb4
commit 236df3a192
7 changed files with 113 additions and 42 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

91
main.py
View File

@ -1,6 +1,7 @@
import pygame
import numpy as np
import matplotlib.pyplot as plt
import math
from particle import Particle
from sensor import Sensor
from slider import Slider
@ -11,42 +12,67 @@ SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
SENSOR_DISTANCE = 200
REST_MEDIUM = 180000
y_lim = 40000
y_lim2 = 0.000000000005
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
sensor = Sensor(width = 50, distance = SENSOR_DISTANCE, space = 300)
sensor.inputVoltage(5, -5)
silica = Particle(speed = 1, size = 60, perm = 4)
silica = Particle(speed = 1, size = 60, perm = 4, rest = pow(10, 12))
time = .1
time_data = []
volume_data = []
sensor_data = []
rest_data = []
current1_data = []
current2_data = []
plt.ion()
fig, ax = plt.subplots()
fig, (ax, ax2) = plt.subplots(2, 1, figsize=(10, 10))
line, = ax.plot([], [], 'r-')
ax.set_xlim(0, 800)
ax.set_ylim(-1000, y_lim)
line2, = ax.plot([], [], 'g-')
line3, = ax2.plot([], [], 'b-')
line4, = ax2.plot([], [], 'g-')
ax.set_xlim(0, 900)
ax.set_ylim(-0.01, y_lim)
ax.set_xlabel('Time (s)')
ax.set_ylabel('Volume')
ax.set_title('Volume/time')
ax2.set_xlim(0, 900)
ax2.set_ylim(-1 * y_lim2, y_lim2)
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Current')
ax2.set_title('Current/time')
slider1 = Slider(20, 20, 100, 20, 20, SENSOR_DISTANCE / 2, 80)
slider2 = Slider(20, 50, 100, 20, .1, 10, 1)
slider3 = Slider(20, 80, 100, 20, 1, 100, 10)
run = True
while run:
timeScale = slider2.value
sensor.inputVoltage(slider3.value, -1 * slider3.value)
distance = silica.move(time)
if distance > SCREEN_WIDTH + (silica.size * 2):
time =.1
time_data = []
volume_data = []
sensor_data = []
rest_data = []
current1_data = []
current2_data = []
screen.fill((0,0,0))
@ -56,6 +82,8 @@ while run:
pygame.draw.circle(screen, (0,255,0), (distance - silica.size, 300), 10)
slider1.draw(screen)
slider2.draw(screen)
slider3.draw(screen)
silica.updateSize(slider1.value)
@ -63,26 +91,77 @@ while run:
if event.type == pygame.QUIT:
run = False
slider1.handle_event(event)
slider2.handle_event(event)
slider3.handle_event(event)
volume = sensor.getParticleVolume(distance, silica)
sensor_data_volume = sensor.volume - volume
sensor_data.append(sensor_data_volume)
sensor_resistance = REST_MEDIUM * ((pow(sensor.distance, 2) * pow(10, -18)) / (sensor_data_volume * pow(10, -27)))
nom_sens_res = REST_MEDIUM * ((sensor.distance * pow(10, -9)) / (sensor.width * sensor.distance * pow(10, -18)))
if volume:
particle_resistance = silica.rest * pow((3/(16 * pow(math.pi, 2) * volume * pow(10, -9))), 1/3)
total_resistance_inv = (1 / particle_resistance) + (1 / sensor_resistance)
else:
particle_resistance = 0
total_resistance_inv = 1 / sensor_resistance
total_resistance = 1 / total_resistance_inv
current1 = 0
current2 = 0
which_sensor = sensor.whichSensor(distance, silica)
if which_sensor == 1:
current1 = sensor.voltage1 / total_resistance
current2 = sensor.voltage2 / nom_sens_res
elif which_sensor == 2:
current2 = sensor.voltage2 / total_resistance
current1 = sensor.voltage1 / nom_sens_res
else:
current1 = sensor.voltage1 / nom_sens_res
current2 = sensor.voltage2 / nom_sens_res
current1_data.append(current1)
current2_data.append(current2)
print(f"{current1} = {sensor.voltage1} / {total_resistance}")
rest_data.append(total_resistance)
if (volume > y_lim):
y_lim = volume + (volume * 1.2)
ax.set_ylim(-1000, y_lim)
if (current1 > y_lim2):
y_lim2 = current1 + (current1 * 1.2)
ax2.set_ylim(-1 * y_lim2, y_lim2)
time_data.append(time)
volume_data.append(volume)
line.set_xdata(time_data)
line.set_ydata(volume_data)
line2.set_xdata(time_data)
line2.set_ydata(sensor_data)
line3.set_xdata(time_data)
line3.set_ydata(current1_data)
line4.set_xdata(time_data)
line4.set_ydata(current2_data)
ax.relim()
ax.autoscale_view()
ax2.relim()
ax2.autoscale_view()
plt.draw()
plt.pause(0.01)
pygame.display.update()
time = time + 1
time = timeScale + time
pygame.quit()

View File

@ -1,10 +1,11 @@
import math
class Particle:
def __init__(self, speed, size, perm):
def __init__(self, speed, size, perm, rest):
self.speed = speed
self.size = size
self.perm = perm
self.rest = rest
self.volume = (4/3.0) * math.pi * size * size * size
def move(self, time):

BIN
pics/Figure_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@ -5,6 +5,7 @@ class Sensor:
self.width = width
self.distance = distance
self.space = space
self.volume = width * pow(distance, 2)
def generate(self, screenWidth, screenHeight, screen):
self.sensor1_x = (screenWidth / 2) - (self.space / 2) - self.width
@ -34,45 +35,18 @@ class Sensor:
pygame.draw.rect(screen, (0, 0, 255), sensor2b)
def testSensor1(self, partCenter, particle):
particle_x = partCenter - particle.size
particle_right = particle_x + particle.size
particle_left = particle_x - particle.size
# Sensor lines on one half of sphere center
if particle_right > self.outer1 and particle_x < self.inner1:
volume = particle.partialVol(self.width + (particle_right - self.outer1)) - particle.partialVol(particle_right - self.outer1)
print("On right half")
print(volume)
if (particle.size >= abs(self.inner1 - (partCenter - particle.size))) and (particle.size >= abs(self.outer1 - (partCenter - particle.size))):
volume = ((particle.volume / 2) - (particle.partialVol(particle.size - ((partCenter - particle.size) - self.inner1)))) + ((particle.volume / 2) - particle.partialVol(particle.size - (self.outer1 - (partCenter - particle.size))))
return volume
# if Sensor is on left half of sphere center
elif particle_left < self.inner1 and particle_x > self.outer1:
volume = particle.partialVol(self.width + (self.inner1 - particle_left)) - particle.partialVol(self.inner1 - particle_left)
print("On left half")
print(volume)
elif particle.size >= abs(self.inner1 - (partCenter - particle.size)):
volume = particle.partialVol(particle.size - (self.inner1 - (partCenter - particle.size)))
return volume
# On bolth halves
elif (particle_x >= self.inner1 and particle_x <= self.outer1) and particle_left < self.inner1 and particle_right > self.outer1:
volume_left = particle.partialVol(self.inner1 - particle_left)
volume_right = particle.partialVol(particle_right - self.outer1)
volume = particle.volume - (volume_left + volume_right)
print("On both halves")
print(volume_left)
print(volume_right)
elif particle.size >= abs(self.outer1 - (partCenter - particle.size)):
volume = particle.volume - particle.partialVol(particle.size - (self.outer1 - (partCenter - particle.size)))
return volume
elif (particle_right > self.inner1 and particle_right < self.outer1) and particle_x <= self.inner1:
volume = particle.partialVol(particle_right - self.inner1)
print("Approaching from left")
print(volume)
elif ((partCenter - particle.size) >= self.inner1 and (partCenter - particle.size) <= self.outer1):
volume = particle.volume
return volume
elif (particle_left > self.inner1 and particle_left < self.outer1) and particle_x >= self.outer1:
volume = particle.partialVol(self.outer1 - particle_left)
print("Leaving from left")
print(volume)
return volume
elif (particle_right > self.inner1 and particle_right <= self.outer1) and (particle_left >= self.inner1 and particle_left < self.outer1):
print("in between")
print(particle.volume)
return particle.volume
else:
return 0
@ -94,6 +68,7 @@ class Sensor:
def getParticleVolume(self, partCenter, particle):
volume1 = self.testSensor1(partCenter, particle)
#volume1 = 0
volume2 = self.testSensor2(partCenter, particle)
if volume1:
@ -102,3 +77,19 @@ class Sensor:
return volume2
else:
return 0
def whichSensor(self, partCenter, particle):
volume1 = self.testSensor1(partCenter, particle)
#volume1 = 0
volume2 = self.testSensor2(partCenter, particle)
if volume1:
return 1
elif volume2:
return 2
else:
return 0
def inputVoltage(self, voltage1, voltage2):
self.voltage1 = voltage1
self.voltage2 = voltage2