diff --git a/__pycache__/particle.cpython-312.pyc b/__pycache__/particle.cpython-312.pyc deleted file mode 100644 index fec9411..0000000 Binary files a/__pycache__/particle.cpython-312.pyc and /dev/null differ diff --git a/__pycache__/sensor.cpython-312.pyc b/__pycache__/sensor.cpython-312.pyc deleted file mode 100644 index b98724e..0000000 Binary files a/__pycache__/sensor.cpython-312.pyc and /dev/null differ diff --git a/__pycache__/slider.cpython-312.pyc b/__pycache__/slider.cpython-312.pyc deleted file mode 100644 index ca00cce..0000000 Binary files a/__pycache__/slider.cpython-312.pyc and /dev/null differ diff --git a/main.py b/main.py deleted file mode 100644 index cb37ebf..0000000 --- a/main.py +++ /dev/null @@ -1,168 +0,0 @@ -import pygame -import numpy as np -import matplotlib.pyplot as plt -import math -from particle import Particle -from sensor import Sensor -from slider import Slider - -pygame.init() - -SCREEN_WIDTH = 800 -SCREEN_HEIGHT = 600 - -SENSOR_DISTANCE = 200 -REST_MEDIUM = 180000 - -y_lim = 40000 -y_lim2 = 0.000000000005 - - -screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) - -sensor = Sensor(width = 50, distance = SENSOR_DISTANCE, space = 300) -sensor.inputVoltage(5, -5) - - - -silica = Particle(speed = 1, size = 60, perm = 4, rest = pow(10, 12)) - -time = .1 -time_data = [] -volume_data = [] -sensor_data = [] -rest_data = [] -current1_data = [] -current2_data = [] - - -plt.ion() -fig, (ax, ax2) = plt.subplots(2, 1, figsize=(10, 10)) -line, = ax.plot([], [], 'r-') -line2, = ax.plot([], [], 'g-') -line3, = ax2.plot([], [], 'b-') -line4, = ax2.plot([], [], 'g-') -ax.set_xlim(0, 900) -ax.set_ylim(-0.01, y_lim) -ax.set_xlabel('Time (s)') -ax.set_ylabel('Volume') -ax.set_title('Volume/time') - -ax2.set_xlim(0, 900) -ax2.set_ylim(-1 * y_lim2, y_lim2) -ax2.set_xlabel('Time (s)') -ax2.set_ylabel('Current') -ax2.set_title('Current/time') - -slider1 = Slider(20, 20, 100, 20, 20, SENSOR_DISTANCE / 2, 80) -slider2 = Slider(20, 50, 100, 20, .1, 10, 1) -slider3 = Slider(20, 80, 100, 20, 1, 100, 10) - -run = True -while run: - - timeScale = slider2.value - sensor.inputVoltage(slider3.value, -1 * slider3.value) - - distance = silica.move(time) - if distance > SCREEN_WIDTH + (silica.size * 2): - time =.1 - time_data = [] - volume_data = [] - sensor_data = [] - rest_data = [] - current1_data = [] - current2_data = [] - - screen.fill((0,0,0)) - - sensor.generate(SCREEN_WIDTH, SCREEN_HEIGHT, screen) - - pygame.draw.circle(screen, (255, 255, 255), (distance - silica.size, 300), silica.size) - pygame.draw.circle(screen, (0,255,0), (distance - silica.size, 300), 10) - - slider1.draw(screen) - slider2.draw(screen) - slider3.draw(screen) - - silica.updateSize(slider1.value) - - for event in pygame.event.get(): - if event.type == pygame.QUIT: - run = False - slider1.handle_event(event) - slider2.handle_event(event) - slider3.handle_event(event) - - volume = sensor.getParticleVolume(distance, silica) - - sensor_data_volume = sensor.volume - volume - sensor_data.append(sensor_data_volume) - - sensor_resistance = REST_MEDIUM * ((pow(sensor.distance, 2) * pow(10, -18)) / (sensor_data_volume * pow(10, -27))) - nom_sens_res = REST_MEDIUM * ((sensor.distance * pow(10, -9)) / (sensor.width * sensor.distance * pow(10, -18))) - - if volume: - particle_resistance = silica.rest * pow((3/(16 * pow(math.pi, 2) * volume * pow(10, -9))), 1/3) - total_resistance_inv = (1 / particle_resistance) + (1 / sensor_resistance) - else: - particle_resistance = 0 - total_resistance_inv = 1 / sensor_resistance - - total_resistance = 1 / total_resistance_inv - - current1 = 0 - current2 = 0 - - - which_sensor = sensor.whichSensor(distance, silica) - if which_sensor == 1: - current1 = sensor.voltage1 / total_resistance - current2 = sensor.voltage2 / nom_sens_res - elif which_sensor == 2: - current2 = sensor.voltage2 / total_resistance - current1 = sensor.voltage1 / nom_sens_res - else: - current1 = sensor.voltage1 / nom_sens_res - current2 = sensor.voltage2 / nom_sens_res - - current1_data.append(current1) - current2_data.append(current2) - print(f"{current1} = {sensor.voltage1} / {total_resistance}") - rest_data.append(total_resistance) - - if (volume > y_lim): - y_lim = volume + (volume * 1.2) - ax.set_ylim(-1000, y_lim) - - if (current1 > y_lim2): - y_lim2 = current1 + (current1 * 1.2) - ax2.set_ylim(-1 * y_lim2, y_lim2) - - - - time_data.append(time) - volume_data.append(volume) - - line.set_xdata(time_data) - line.set_ydata(volume_data) - line2.set_xdata(time_data) - line2.set_ydata(sensor_data) - line3.set_xdata(time_data) - line3.set_ydata(current1_data) - line4.set_xdata(time_data) - line4.set_ydata(current2_data) - ax.relim() - ax.autoscale_view() - ax2.relim() - ax2.autoscale_view() - plt.draw() - plt.pause(0.01) - - pygame.display.update() - - time = timeScale + time - -pygame.quit() - - diff --git a/particle.py b/particle.py deleted file mode 100644 index 338b020..0000000 --- a/particle.py +++ /dev/null @@ -1,23 +0,0 @@ -import math - -class Particle: - def __init__(self, speed, size, perm, rest): - self.speed = speed - self.size = size - self.perm = perm - self.rest = rest - self.volume = (4/3.0) * math.pi * size * size * size - - def move(self, time): - distance = self.speed * time - return distance - - def partialVol(self, height): - partialVol = (1/3) * math.pi * height * height * ((3 * self.size) - height) - return partialVol - - def updateSize(self, size): - self.size = size - self.volume = (4/3) * math.pi * size * size * size - - diff --git a/pics/Figure_1.png b/pics/Figure_1.png deleted file mode 100644 index c6aa4f5..0000000 Binary files a/pics/Figure_1.png and /dev/null differ diff --git a/sensor.py b/sensor.py deleted file mode 100644 index 6e53002..0000000 --- a/sensor.py +++ /dev/null @@ -1,95 +0,0 @@ -import pygame - -class Sensor: - def __init__(self, width, distance, space): - self.width = width - self.distance = distance - self.space = space - self.volume = width * pow(distance, 2) - - def generate(self, screenWidth, screenHeight, screen): - self.sensor1_x = (screenWidth / 2) - (self.space / 2) - self.width - self.sensor1_y = 0 - self.sensor1_x_size = self.width - self.sensor1_y_size = (screenHeight / 2) - (self.distance / 2) - - self.inner1 = self.sensor1_x - self.outer1 = self.inner1 + self.width - - sensor1a = pygame.Rect(self.sensor1_x, self.sensor1_y, self.sensor1_x_size, self.sensor1_y_size) - sensor1b = pygame.Rect(self.sensor1_x, self.sensor1_y + self.sensor1_y_size + self.distance, self.sensor1_x_size, self.sensor1_y_size) - pygame.draw.rect(screen, (0, 0, 255), sensor1a) - pygame.draw.rect(screen, (0, 0, 255), sensor1b) - - self.sensor2_x = (screenWidth / 2) + (self.space / 2) - self.sensor2_y = 0 - self.sensor2_x_size = self.width - self.sensor2_y_size = (screenHeight / 2) - (self.distance / 2) - - self.inner2 = self.sensor2_x - self.outer2 = self.inner2 + self.width - - sensor2a = pygame.Rect(self.sensor2_x, self.sensor2_y, self.sensor2_x_size, self.sensor2_y_size) - sensor2b = pygame.Rect(self.sensor2_x, self.sensor2_y + self.sensor2_y_size + self.distance, self.sensor2_x_size, self.sensor2_y_size) - pygame.draw.rect(screen, (0, 0, 255), sensor2a) - pygame.draw.rect(screen, (0, 0, 255), sensor2b) - - def testSensor1(self, partCenter, particle): - if (particle.size >= abs(self.inner1 - (partCenter - particle.size))) and (particle.size >= abs(self.outer1 - (partCenter - particle.size))): - volume = ((particle.volume / 2) - (particle.partialVol(particle.size - ((partCenter - particle.size) - self.inner1)))) + ((particle.volume / 2) - particle.partialVol(particle.size - (self.outer1 - (partCenter - particle.size)))) - return volume - elif particle.size >= abs(self.inner1 - (partCenter - particle.size)): - volume = particle.partialVol(particle.size - (self.inner1 - (partCenter - particle.size))) - return volume - elif particle.size >= abs(self.outer1 - (partCenter - particle.size)): - volume = particle.volume - particle.partialVol(particle.size - (self.outer1 - (partCenter - particle.size))) - return volume - elif ((partCenter - particle.size) >= self.inner1 and (partCenter - particle.size) <= self.outer1): - volume = particle.volume - return volume - else: - return 0 - - def testSensor2(self, partCenter, particle): - if (particle.size >= abs(self.inner2 - (partCenter - particle.size))) and (particle.size >= abs(self.outer2 - (partCenter - particle.size))): - volume = ((particle.volume / 2) - (particle.partialVol(particle.size - ((partCenter - particle.size) - self.inner2)))) + ((particle.volume / 2) - particle.partialVol(particle.size - (self.outer2 - (partCenter - particle.size)))) - return volume - elif particle.size >= abs(self.inner2 - (partCenter - particle.size)): - volume = particle.partialVol(particle.size - (self.inner2 - (partCenter - particle.size))) - return volume - elif particle.size >= abs(self.outer2 - (partCenter - particle.size)): - volume = particle.volume - particle.partialVol(particle.size - (self.outer2 - (partCenter - particle.size))) - return volume - elif ((partCenter - particle.size) >= self.inner2 and (partCenter - particle.size) <= self.outer2): - volume = particle.volume - return volume - else: - return 0 - - def getParticleVolume(self, partCenter, particle): - volume1 = self.testSensor1(partCenter, particle) - #volume1 = 0 - volume2 = self.testSensor2(partCenter, particle) - - if volume1: - return volume1 - elif volume2: - return volume2 - else: - return 0 - - def whichSensor(self, partCenter, particle): - volume1 = self.testSensor1(partCenter, particle) - #volume1 = 0 - volume2 = self.testSensor2(partCenter, particle) - - if volume1: - return 1 - elif volume2: - return 2 - else: - return 0 - - def inputVoltage(self, voltage1, voltage2): - self.voltage1 = voltage1 - self.voltage2 = voltage2 diff --git a/slider.py b/slider.py deleted file mode 100644 index 304e27d..0000000 --- a/slider.py +++ /dev/null @@ -1,35 +0,0 @@ -import pygame - -WHITE = (255, 255, 255) -GRAY = (200, 200, 200) -BLACK = (0, 0, 0) -RED = (255, 0, 0) - -class Slider: - - def __init__(self, x, y, w, h, min_val, max_val, initial_val): - self.rect = pygame.Rect(x, y, w, h) - self.min_val = min_val - self.max_val = max_val - self.value = initial_val - self.grabbed = False - - def draw(self, screen): - # Draw the background - pygame.draw.rect(screen, GRAY, self.rect) - # Draw the handle (circle) - handle_x = self.rect.x + (self.value - self.min_val) / (self.max_val - self.min_val) * self.rect.width - pygame.draw.circle(screen, RED, (int(handle_x), self.rect.centery), self.rect.height // 2) - - def handle_event(self, event): - if event.type == pygame.MOUSEBUTTONDOWN: - if self.rect.collidepoint(event.pos): - self.grabbed = True - elif event.type == pygame.MOUSEBUTTONUP: - self.grabbed = False - elif event.type == pygame.MOUSEMOTION: - if self.grabbed: - mouse_x = event.pos[0] - # Constrain the handle within the slider - new_value = (mouse_x - self.rect.x) / self.rect.width * (self.max_val - self.min_val) + self.min_val - self.value = max(self.min_val, min(self.max_val, new_value))